Molecular and Cellular Pathobiology Shmt1 Heterozygosity Impairs Folate-Dependent Thymidylate Synthesis Capacity and Modifies Risk of Apc-Mediated Intestinal Cancer Risk

نویسندگان

  • Amanda J. MacFarlane
  • Cheryll A. Perry
  • Michael F. McEntee
  • David M. Lin
  • Patrick J. Stover
چکیده

Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate, and Sadenosylmethionine, the primary cellular methyl donor. Impairments in folate metabolism diminish cellular methylation potential and genome stability, which are risk factors for colorectal cancer (CRC). Cytoplasmic serine hydroxymethyltransferase (SHMT1) regulates the partitioning of folate-activated one-carbons between thymidylate and S-adenosylmethionine biosynthesis. Therefore, changes in SHMT1 expression enable the determination of the specific contributions made by thymidylate and S-adenosylmethionine biosynthesis to CRC risk. Shmt1 hemizygosity was associated with a decreased capacity for thymidylate synthesis due to downregulation of enzymes in its biosynthetic pathway, namely thymidylate synthase and cytoplasmic thymidine kinase. Significant Shmt1-dependent changes to methylation capacity, gene expression, and purine synthesis were not observed. Shmt1 hemizygosity was associated with increased risk for intestinal cancer in Apcmin/þmice through a gene-by-diet interaction, indicating that the capacity for thymidylate synthesis modifies susceptibility to intestinal cancer in Apcmin/þ mice. Cancer Res; 71(6); 2098–107. 2011 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shmt1 heterozygosity impairs folate-dependent thymidylate synthesis capacity and modifies risk of Apc(min)-mediated intestinal cancer risk.

Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate, and S-adenosylmethionine, the primary cellular methyl donor. Impairments in folate metabolism diminish cellular methylation potential and genome stability, which are risk factors for colorectal cancer (CRC). Cytoplasmic serine hydroxymethyltransferase (SHMT1) regulates the partitioning of folate...

متن کامل

Azoxymethane-induced colon carcinogenesis in mice occurs independently of de novo thymidylate synthesis capacity.

Folate metabolism affects DNA synthesis, methylation, mutation rates, genomic stability, and gene expression, which are altered in colon cancer. Serine hydroxymethyltransferase 1 (SHMT1) regulates thymidylate (dTMP) biosynthesis and uracil accumulation in DNA, and as such affects genome stability. Previously, we showed that decreased SHMT1 expression in Shmt1 knockout mice (Shmt1(-/+)) or its i...

متن کامل

Disruption of shmt1 impairs hippocampal neurogenesis and mnemonic function in mice.

Impaired folate-mediated one-carbon metabolism (OCM) has emerged as a risk factor for several diseases associated with age-related cognitive decline, but the underlying mechanisms remain unknown and thus hinder the identification of subpopulations most vulnerable to OCM disruption. Here we investigated the role of serine hydroxymethyltransferase 1 (SHMT1), a folate-dependent enzyme regulating d...

متن کامل

Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA.

Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known wheth...

متن کامل

Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice.

BACKGROUND Folic acid supplementation prevents the occurrence and recurrence of neural tube defects (NTDs), but the causal metabolic pathways underlying folic acid-responsive NTDs have not been established. Serine hydroxymethyltransferase (SHMT1) partitions folate-derived one-carbon units to thymidylate biosynthesis at the expense of cellular methylation, and therefore SHMT1-deficient mice are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011